
Meeting

Pentaho Data
Integration

- i -

License

This work is licensed under the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

All trademarks and logos included or mentioned in this document belong to their
legitimate owners.

Author
María Carina Roldán
Bachelor degree in Information Technology (UNLP – Argentina)
email: maria.carina.roldan@gmail.com

- ii -

mailto:maria.carina.roldan@gmail.com

Preface

This document is an introduction to PDI, the integrating tool of the Pentaho Suite.
The text is built on the classic “Hello, World”, explaining the fundamental concepts
of the tool in a step-by-step fashion.

The intended audience of this work are those who have never used PDI, but those
who did, can also get benefit of it, because the text clarify some concepts seen
again and again in the PDI forum (i.e. user-defined variables)

The text is organized as follows:
Introduction – In the first place the tool is introduced, and instructions are given
for the installation.
Hello, world – This is the first example, with step-by-step instructions.
Hello, world again – It’s a complete and enhanced version of the example. In
this example more important concepts are explained.

At the end of the paper, tips and links are given for those who want to work with
PDI from now on.

- iii -

Contents

License ... ii

Author ... ii

Preface .. iii

Contents ... 1

Introduction .. 2

Installing PDI .. 2

Meeting Spoon ... 3
Repository and Files .. 3
Starting Spoon .. 3

Hello, World .. 4
Task .. 5
Preparing the Environment .. 6
Step by Step ... 6
How does it work? ... 15
Verify, Preview and Execute! .. 15
Pan .. 18

Hello World again! .. 20
Task .. 20
Preparing the Environment .. 22
A. Creating the transformation which takes the parameter .. 23
B. Modificating the transformation Hello.ktr .. 26
C. Building the main job .. 28
How does it work? ... 32
Kitchen ... 33

Conclusion ... 35

Introduction
PDI (aka Kettle) is the component of Pentaho responsible for the ETL processes. Yet
every ETL tool including PDI is most frequently seen in data warehouses
environments, PDI can also be used for other purposes:

-Migrating data between applications or databases
-Exporting data from databases to flat files
-Loading data massively into databases
-Data cleansing
-Integrating applications
-etc.

PDI is easy to use. Every process is created with a graphical tool where you specify
what to do without writing code to indicate how to do it. Therefore it is said that the
solution is meta-data oriented.

PDI can be used as a stand-alone application, or integrated with the other
components of the Pentaho Suite. As an ETL tool, is the most popular among the
open source tools.
PDI supports a vast kind of input and output formats, including flat files, data
sheets, and connection with commercial and free database engines. Moreover, the
transformation capabilities of PDI allow you to manipulate data with very few
limitations.

In this tutorial you’ll see you how easy is to work with PDI. Through the build of a
simple “Hello, World” you will meet the most used characteristics of this tool.
After reading the whole paper, you will have the willing to build your own project.

Installing PDI
The first step for working with PDI, is to install the tool.
PDI can be downloaded from http://community.pentaho.com/sourceforg e/

At this time, the newest released version is 3.0.3. The file you have to download is
Kettle-3.0.3.GA-nnnn.zip

PDI does not require installation (except if you download the .exe file)
The only prerequisite for working with PDI is to have JRE 5.0 or higher installed.
It can be downloaded from http://www.javasoft.com/

After you check this prerequisite, you simply have to unzip the zip file in a folder of
your choice. Under Unix-like environments, you will need to make the shell scripts
executable. If this is your situation, execute the following commands: (assuming
that you chose Kettle as the installation folder)

cd Kettle
chmod +x *.sh

http://www.javasoft.com/
http://community.pentaho.com/sourceforge/
http://community.pentaho.com/sourceforge/

Now you have all you need to start with PDI.

Meeting Spoon

When you see PDI screenshots, what you are really seeing are Spoon screenshots.
Spoon is the graphical tool in which you design and test every PDI process. The
other PDI components execute the process designed with Spoon, and are executed
from a terminal window as you’ll see in a while.

Repository and Files

In Spoon you build Jobs and Transformations. In order to save the Jobs and
Transformations, PDI offers two methods:

Database Repository
Files

If you choose the repository method, the repository has to be created the first time
you execute Spoon.
If you choose the files method, the Jobs are saved in files with extension kjb, and
the Transformations, in files with extension ktr.

In this tutorial you’ll work with the second method.

Starting Spoon

Let's start working. Start Spoon executing:

Spoon.bat in Windows
or

Spoon.sh in other platforms like Unix, Linux, ...

As soon as Spoon starts, a dialog window appears asking for the repository
connection data. As said, you’ll work with files. So, click the No Repository button.

The first you'll see will be a welcome window. This first time, you probably want to
change some of the look and feel. Click Options... from the menu Edit. A window
appears where you can change various general and visual characteristics. If you
change something, it will be necessary to restart Spoon in order to see the changes
applied.

Now you’re ready to face the “Hello, World”.

Hello, World

“Hello, World” will be your first experience with PDI. Although this will be a simple
example, it will allow you to meet some of the fundamentals of PDI:

-Working with the Spoon tool
-Transformations

-Steps and Hops
-Predefined variables
-Previewing and Executing from Spoon
-Executing Transformations from a terminal window with the Pan tool.

Pay attention! Each time you see a box like this, have in mind that it contains
important definitions and tips that will be useful to you beyond the tutorial.

Task

Let's suppose that you have a csv file containing a list of people, and want to
create an xml file containing greetings for each of them.

If this were the content of your file:

This would be the output:

The creation of the file with greetings from the flat file will be the task of your first
Transformation.

A Transformation is an entity made of Steps linked by Hops. This Steps and
Hops conform paths through which flows data: the data enter, is transformed and
leave. Therefore it’s said that a Transformation is data-flow oriented.

Preparing the Environment

Before starting with the Transformation, create the folder Tutorial (inside or
outside the installation folder; you choose). There you’ll save all the files of the
tutorial.
Then create a file like the one seen in the introduction of this example, and save it
with the name list.csv in the created folder.
The existence of this file is not mandatory, but if the file exists, it will be easier to
configure the first Step of the Transformation.

Step by Step

The proposed task will be accomplished in three subtasks:
1)Creating the Transformation
2)Constructing the skeleton of the Transformation using Steps and Hops
3)Configuring the Steps in order to specify their behavior

Subtask 1. Creating the Transformation

−Select New → Transformation. Another option for
doing the same is to create a Transformation from
the menu File → New → Transformation or to
press <Ctrl-N>. Almost the entire screen is now
occupied by this new Transformation. This is the
workspace where you will be dropping Steps and
Hops.

−Select the option Transformation → Configuration. A window appears
where you can specify Transformation properties. In this case, just write a
name and a description, like here:

−Press the Save button. Save the Transformation in the folder Tutorial with
the name hello. The file hello.ktr will have been created.

Subtask 2. Constructing the skeleton of the Transformation using Steps
and Hops

A Step is the minimal unit inside a Transformation. A big set of Steps is available.
These Steps are grouped in categories like Input or Output among others. Each
Step is conceived to accomplish a specific function, going from reading a parameter
to normalizing a dataset.

A Hop is a graphical representation of data flowing between two Steps: an origin
and a destination. The data that flows through that Hop constitute the Output
Data of the origin Step and the Input Data of the destination Step.

A Hop has only one origin and one destination. However, more than one Hop could
leave a Step. In that case, the Output Data can be copied to every destination, or
can be distributed to them.

Also more than one Hop can reach a Step. In that case, the Step has to have the
ability to merge the Input from the different Steps in order to create the Output.

Let’s see what the Transformation has to do:

For each of the items you’ll use a different Step, according to the next diagram:

Have in mind that here you have a one to one correspondence because the
Transformation is very simple. It isn’t always so!

These are the steps to follow:

−To the left of the workspace is the Steps Palette. Identify in the palette the
Input category.Click the CSV file input step and drag it to the workspace.

Read the file with names

Build the greetings

Save the greetings in
the output file

Read the file with names

Build the greetings

Save the greetings in
the output file

−Identify in the palette the Scripting category. Click the Modified Java
Script Value step and drag it in the same way.

−Identify the palette the Output category. Click the XML Output step and
drag it too.

−Link CSV file input with Modified Java Script Value by creating a Hop:
Click the first Step and holding the <Shift> key pressed, drag the cursor
towards the second Step. Release the button. (The Spoon User Manual
explains other ways to do the same)
−Link Modified Java Script Value with XML Output following the same
indications.

You will have the following screen:

Subtask 3. Configuring the Steps in order to specify their behavior

Every Step has a configuration window. These windows vary according to the
functionality of the Steps and the category to which they belong. However, all of
them have this in common:

Step Name is a representative name inside the Transformation.
Step Description allows you to clarify the purpose of the Step.

a) Configuring the CSV file input Step

−Double click on the CSV file input Step. The configuration
window belonging to this kind of Step will appear. Here you’ll
indicate the location, format and content of the input file.

−Step name: The first thing you should do in any Step you
configure is to erase the default name and put a more
representative one, according to the function that the Step is going
to accomplish within the Transformation. In this case, you will put
“name list”.

−Filename: Here you have to put the name and location of the
input file. Just to the right of the text box, you’ll see a symbol with
the dollar sign.

This symbol to the right of any text box implies that in that box, you could use
variables as well as plain text.
A variable can be written manually as ${name_of_the_variable} or selected
from the variable window, to which you access pressing <Ctrl-Space>. The window
shows predefined variables as well as user-defined variables.

You haven’t created any variables yet, so in this case, you’ll only see predefined
variables:

Among this, select:

${Internal.Transformation.Filename.Directory}

Beside the name of the variable, write the name of the file you created. The text
will become:

${Internal.Transformation.Filename.Directory}/list.csv

In runtime, the variable will be replaced by its value, which will be the path
where the Transformation was saved. The Transformation will search the file
list.csv in that location.

−Get Fields: Press this button to ask the application to bring to the grid the list of
column names of the input file. Observe that, by default, the Step consider that the
file has headers (Header row present is checked).

The button Get Fields is present in the configuration window of many Steps. Its
purpose is to load a grid with data coming from external sources (i.e. files) or
previous Steps. Even when the fields can be written manually, this button gives you
a shortcut when there are many available fields and you want to use all or almost
all of them.

The grid has now the names of the columns of your file: last_name and name.

The screenshot should look like this:

−Preview Rows: Just to be sure that the file will be read as expected, press the
Preview button. A window showing data from the file will appear: so many rows as
you ask (except that the number of rows in the file were less).

−OK: Press this button, and you are done with the Step CSV file input.

b) Configuring the Modified Java Script Value Step

−Double click on the Modified Java Script Value Step. The
configuration window for this kind of Step will appear. The
windows is, indeed, very different from that which you saw in the
previous Step. In this case, the Step allow you to write JavaScript
code, and you will use it to build the message “Hello, ”
concatenated with each of the names.

−Step name: Name this Step “Greetings”.

−Java script: The main area of the configuration window is for
coding. To the left, there is a tree with a set of available functions
that you can use in the code. In particular, the last two branches
have the input and the output fields, ready to use in the code. In this example
there are two fields: last_name and name.
Write the following code:

var msg = 'Hello, ' + name.getString() + "!";

The text name.getString() can be written manually, or by double clicking on
the text in the function's tree.

−Fields: At the bottom you can put any variable created in the code that you wish
to add to the output fields. In this case, you have created the variable msg. (Don't
mix this variables with PDI variables! They are not the same.) As you need to send
this message to the output file, you have to write the variable name in the grid.

You have configured the Step, and have this result:

Just to know! “modified” is not an adjective for “JavaScript”, but for the Step.
you are not dealing with a variant of JavaScript. Is the Step itself that is
modified: It is an enhanced version of the original Step, which you found in
previous versions of PDI.

−OK: Press this button, and the Step Modified Script Value is configured.

−Select the Step you just configured. In order to check that the new field will leave
this step, you will see now the Input and Output Fields.

Input Fields: The data columns that reach a Step are called Input Fields.
Output Fields: The data columns that leave a Step are called Output Fields.

There are Steps that simply transform the input data. In this cases, the input and
output fields are the same.
However that is not always the case:
There are Steps that add fields to the Output, for example: Calculator
There are other Steps that filter or combine data causing that the Output has less
fields that the Input, for example: Group by

Pressing the right button just over the Step, a contextual menu appears:

−Select Show Input Fields. You'll see that the Input Fields are those coming
from the CSV file input Step: last_name and name.
−Select Show Output Fields. You'll see that not only you have the existing
fields, but also the new field: msg.

c) Configuring the XML Output Step

−Double click the XML Output Step. The configuration window for
this kind of Step will appear. Here you’re going to set the name
and location of the output file, and to establish which of the fields
you want to include. You may include all or some of the fields that
reach the Step.

−Step name: Name the Step “File with Greetings”.

−File: In this box write:

${Internal.Transformation.Filename.Directory}/Hello.xml

Remember that you can select the name of the variable from the variable's
window pressing <Ctrl-Space>.

−Contents: This tab allows you to configure the format of the output file. Leave the
default.
−Fields: Press the button Get Fields. The grid is filled with the three input fields.
In the output file you only want to include the message, so delete name and
last_name.

Don't forget to save the Transformation again.

How does it work?

When you execute a Transformation, almost all Steps are executed simultaneously.
The Transformation execute asynchronously: The rows of data flow through the
Steps at their own pace. Each processed row flow to the next Step without waiting
for the others.

In real Transformations, forgetting this characteristic can be the main cause of
unexpected results.

It’s almost all configured. A Transformation read the input file, for each row (i.e. for
each name) the JavaScript code create the message and finally the message is sent
to the output file.
This example is too small and you have very few rows of names. Therefore is very
difficult to notice the asynchronism in the execution. However, it always works in
that way: It’s possible that at the same time that a name is being written in the
output file, another is leaving the first Step of the Transformation.

Verify, Preview and Execute!

Before executing the Transformation, let’s check that everything is ok.
Press the Verify button.

Spoon will verify if the Transformation is syntactically correct, looking for
unreachable Steps, inexistent connections, etc.
If everything is ok (it should if you followed the indications) you are ready to
preview the output.

Select the JavaScript Step and then click the Preview button.

The following window will appear:

As you can see, Spoon suggests you to preview the selected Step. Press Quick
Launch. After that, you will see a window with a sample of the output of the
JavaScript Step: the messages created for each of the names coming from the
input file.

If the output is what you expected, you’re ready to execute the Transformation.
Press the Run button.

Spoon shows a window where you can set, among other information, the
parameters for the execution and the logging level.

In this opportunity just press Launch at the bottom of the window.

Immediately you’ll see a new tab window besides the Job window: This is the log
tab containing the log of the current execution. (You will have noted that this
tabbed window was also present when you did the preview).

The log tab has two sections:

In the upper side you can see, for each Step of the Transformation, the executed
operations. In particular, pay attention to these:

-Read: contains the number of rows coming from previous Steps.
-Written: contains the number of rows leaving from this Step toward the next.
-Input: number of rows read from a file or table.
-Output: number of rows written to a file or table.
-Errors: errors in the execution. If there are errors, the whole row will become
red.

In the lower side of the window, you will see the execution step by step. The detail
will depend of the log level established. If you pay attention to this detail, you will
see the asynchronism of the execution.

The last line of the text will be:

Spoon - The transformation has finished!!

If there weren’t error messages in the text, you will b able to look for the generated
file Hello.xml and check its content.

Pan

Pan is the tool that allows you to execute Transformations from a terminal window.
The script is pan.bat (Windows) or pan.sh (other platforms), and you’ll find it in
the installation folder.
If you execute:

Pan

You’ll see a description of the command with a list of the available options.

To execute your Transformation, try the simplest command:

Pan /file <Jobs_path>/Hello.ktr /norep

/norep is a command to ask Spoon not to connect to the repository.

/file precedes the name of the file corresponding to the Transformation to be
executed.

<Jobs_path> is the full path of the folder Tutorial, for example:

c:/Pentaho/Tutorial (Windows)
or

/home/PentahoUser/Tutorial

The other options (i.e. log level) take default values.

After you enter this command, the Transformation will be executed quite in the
same way it did inside Spoon. In this case, the log will be written in the same
terminal, unless you redirect the log to a file. The format of the log text will vary a
little, but the information will be basically the same that you saw in the graphical
environment.

That’s it. A simple Transformation that allowed you to meet the basic elements
needed to work with PDI

Hello World again!

Now that the Transformation has been created and executed, the next task will be
enhancing it. In this part of the tutorial you’ll meet some new concepts, as
important as those seen in the first part of this tutorial:

-Jobs
-Job Entries
-Job Hops
-Using Parameters and System Information
-User-defined Variables
-Configuration file kettle.properties
-Executing Jobs from a terminal window with the Kitchen tool.

Task

These are the improvements that you’ll make to your previous task:
-You won’t look for the input file in the same folder, but in a new one, a folder
independent to that where the Transformations are saved. The name of the
input file won’t be fixed; the Transformation will receive it as a parameter.
-You will validate the existence of the input file (exercise: execute the
Transformation you created, setting as the name of the file, a file that doesn’t
exist. See what happens!)
-The name the output file will be dependent of the name of the input file.

Let’s design a simple diagram with the task to be accomplish:

You’re going to implement this diagram with a Job.

Get the parameter

Create the output file
with greetings

The parameter
is null?

The file exists?

yes

Abort

no
Abort

no

yes

Before starting, let’s see some new definitions:

A Job is a component made by Job Entries linked by Hops. This Entries and Hops
are arranged according the expected order of execution. Therefore it is said that a
Job is flow-control oriented.

A Job Entry is a unit of execution inside a Job. Each Job Entry is conceived to
accomplish a specific function ranging from verifying the existence of a table, to
sending an email.

From a Job it is possible to execute a Transformation or another Job, that is, Job
and Transformation are also Job Entries.

A Hop is a graphical representation that identifies the sequence of execution
between two Job Entries.

Even when a Hop has only one origin and one destination, a particular Job Entry
can be reached by more than a Hop, and more than a Hop can leave any particular
Job Entry.

Just as you did with the first Transformation, let’s make a correspondence between
the elements in the diagram and the Job Entries and Hops that you will create.

-Getting the parameter will be resolved by a new Transformation
-The verification of the existence of the parameter will be made by using the
result of the new Transformation. Acting according to that result will be
accomplished by using the conditional execution of the next Steps.
-The verification of the existence of the file will be made by a Job Entry specific
for that function.
-Executing the main task of the Job will be made by a variation of the
Transformation you made in the first part of this tutorial.

Preparing the Environment

For this part of the tutorial, the input and output files will be in a different folder.
Create then the folder Files in the path of your choice.
Copy to this folder the file list.csv or create another, taking into account its
format. Rename it if you wish.

In order to avoid writing the full path each time you need to reference the folder or
the files, you will create a variable containing this information. The variable will be
always available. For doing that, edit the configuration file kettle.properties. This
file is located in the following folder

C:\Documents and Settings\<username>\.kettle\ (Windows)
or

$HOME/.kettle (other platforms)

Get the parameter

Create the output file
with greetings

The parameter
is null?

The file exists?

yes

Abort

no
Abort

no

yes

It is created at the same time that the folder .kettle is: the first time you execute
Spoon.

At the end of the file kettle.properties, write this line:

FILES=<path_of_the_created_folder>

For example:

FILES=c:/Pentaho/Files
or

FILES=/home/PentahoUser/Files

Save the file.

Spoon read the file when it starts, so, to get the new variable FILES available,
restart Spoon.

Now you are ready to start. The full task will be developed in three stages:
A.Creating the Transformation which takes the parameter
B.Modificating the Transformation Hello.ktr.
C.Building the Job according to the diagram.

A. Creating the transformation which takes the parameter

This new Transformation is quite simple. This diagram shows the task involved and
their correspondence with PDI Steps:

Step by Step
1.Creating the Transformation: Create a new Transformation in the same way
you did before. Name this Transformation “get_file_name”.
2.Drag to the workspace the following Steps, name them and link them
according to the diagram.

Get the parameter

Create a variable with
the name of the file

The parameter
is null?

yes

no Abort

Get System Info (Input category)

Filter Rows (Transform category)

Abort (Transform category)

Set Variable (Job category)

3.Configure the Steps as explained below.

a) Configuring the Get System Info Step (Input category)

This Step allow to capture information coming from sources
outside the Transformation, like system date or parameters
entered as part of the command line. In this case, you will
use the Step to get the first and only parameter.

The configuration window of this Step has a grid. In this grid,
each row you fill, will become a new column containing
system data.

-Double click the Step.
-In the first cell, below the Name column, write “my_file”.
-When you click the cell of the same row below Type, a
window will show up with the available options. Select
“command line argument 1”.

-Click OK.

b) Configuring the Filter Rows Step (Transform category)

This Step divides the output in two, based upon a condition.
Those rows for which the condition evaluates to true follow
one path in the diagram, the others follow another.

-Double click the Step

-Write the condition: In Field select “my_file” and
replace the sign “=” by “IS NULL”.

-In the drop down list beside “Send ‘true’ data to
Step” select Abort.

-In the drop down list beside “Send ‘false’ data to
Step” select Set Variable

-Click OK.

Now, a NULL parameter will reach the “Abort” Step. A NOT NULL parameter will
reach the “Set Variable” Step.

c) Configuring the Abort Step (Transform category)

In fact, you don’t have anything to configure in this Step. If a row of data reaches
this Step, the Transformation aborts. Then the Transformation fails. you will use
that result in the main Job.

d) Configuring the “Set Variable” Step (“Job”
category)

This Step allows you to create variables and assign it the
content of some of the input fields.

The configuration window of the Step has a grid. Each row in
this grid is meant to hold a new variable.

-Double click the Step

-Press the Get Fields button. The only existing field will appear: my_file. As
the name for the new variable, Spoon set a default value: the name of the
selected field, in upper case: MY_FILE. Leave the default. You will have this
window:

-Click OK.
So, you created the variable MY_FILE, which will be used later.

Executing
Let’s test the Transformation. Press the Run button.

In the first window observe the grid Parameters. You can use this grid to supply
the parameter you would write in the command line. In the first row, in the column
Value, write “list”.

Press the Launch button.

Observing the log, you’ll see a text like this:

Set Variables.0 - Set variable MY_FILE to value [list]

Press Execute again, but don’t write any parameters. This time, you’ll see this:

Abort.0 - Row nr 1 causing abort : []
Abort.0 - Aborting after having seen 1 rows.

In the upper side of the window, you will see that the Step Abort indicates that an
error occurred. This tells you that the Transformation failed, as expected.

B. Modificating the transformation Hello.ktr

Let’s modify the Transformation Hello in order to make the names of the files
depending of a parameter. If the parameter were xxx, the Transformation would
read the file xxx.csv and create the file xxx_with_greetings.xml.
And, as a plus, let’s add a filter to discard the empty rows in the input file.

Step by Step
-Open the Transformation Hello.ktr
-Open the configuration window of the CSV File Input Step.
-Filename: Delete the content of this text box, and press <Ctrl-Space> to see
the list of existing variables. You’ll see, in the list, the variable you added to

kettle.properties: FILES. Select it and add the name of the variable created
in the previous Transformation. The text become:

${FILES}/${MY_FILE}.csv

-Press OK.

-Open the configuration window of the XML Output Step.
-Filename: Replace the content of the text box by this:

${FILES}/${MY_FILE}_with_greetings.xml

-Press OK.

-Drag to the workspace a Filter Rows Step without releasing it until it is over
the Hop that leaves CSV Input. When you see that the Hop become wider,
release the button.

- You will have linked the new Step to the sequence of existent steps. Write the
condition: As Field select “name” and as comparator select “IS NOT NULL”.

Leave “Send ‘true’ data to Step” and “Send ‘true’ data to Step”
blank. This will cause that only the rows that fulfill the condition (i.e. rows
with not null names) follow to the next Step. This is a variant to the way you
used this kind of Step before.

-Press OK.

-As you want to keep the original version of the Transformation, press Save As
and name the Transformation “Hello_with_parameters”. The file
Hello_with_parameters.ktr will have been created.

Executing the Transformation

To test the changes you made, you need that the variable MY_FILE exists and has a
value. As this Transformation is independent of the Transformation that creates the
variable, in order to execute it, you’ll have to create the variable manually. Select
Set Environment Variables from the menu Edit. You’ll see the existent
variables. At the bottom of the list, write MY_FILE as the name of the variable, and,
as the content, the name of your file without the extension! (i.e. list)

Press OK.

The, press Run. In the list of variables, you’ll see yours. Press the Launch button,
and let the Transformation do its task.
After that, verify that the file:

<your_file>_with_greetings.xml

(being <your_file> the name of the input file) had been created in the folder
designated to the tutorial files. Also verify the content of the file.

C. Building the main job

The last task of this part of the tutorial is the construction of the main job.

Step by Step
1)Creating the Job:

a)Select New → Job. You may also create a Job from the
menu Files → New → Job or by pressing <Ctrl-Alt-N>.
The screen is now occupied by the Job workspace, where
you will drop Job Entries and Hops.

b)Select the option Job → Configuration. A window
appears where you can specify some Job properties. Write a name and a
description.
c)Press the Save button. Save the Job in the Tutorial folder, under the name
Hello. The file Hello.jkb will have been created.

2)Building the skeleton of the Job with Job Entries and Hops: To the left of the
workspace there is a Palette of Job Entries. Unlike the palette of Transformation
Steps, this palette doesn’t group the Entries into categories1.

Let’s build the Job:
a)Drag to the screen this Job Entries, name them and link them as in the
diagram:

Start

Transformation x 2

File Exists

b)Drag to the screen the following entries

Abort Job x 2

name them and link them to the other entries, as in the diagram. You’ll see that
the Hops became red. In a while you’ll know why.

c)Configure the Steps as explained below.

a) Configuring the first of the two Transformation Job Entries
The purpose of the Transformation entry – as you

may have guessed - is to execute a Transformation.
Let’s configure this entry to execute the Transformation
that gets the parameter.

-Double click the entry. The configuration window
appears.
-Transformation filename: Here you have to write
the name of the Transformation file:
“get_file_name.ktr”. As the Transformations and
the Jobs are in the same folder, in order to locate
the Transformation file, you can use the Job path as
a reference. Write this string:

${Internal.Job.Filename.Directory}/get_file_name.ktr

The variable can be written manually, or selected from the variable window.
The file name can also be written manually, or you can search it with the
Browse button.

-Press OK.

1In the 3.1.0 version– not released yet - the Job Entries are grouped in Categories as General, Mail, File
management, etc.

b) Configuring the second of the two Transformation Job Entries

This entry will execute the main function of the Job.

-Double click the entry. The configuration window
appears.

-Transformation filename: In this case, enter the
name of the other Transformation:

${Internal.Job.Filename.Directory}/Hello_with_parameter.ktr

-Press OK.

c) Configuring the File Exists Job Entry

The File Exists entry verifies the existence of a file. The
entry has a successful result only if the file exists.

-Double click the entry. The configuration window
appears.
-Filename: Here you have to put the complete path of
the file whose existence you want to verify. The name is
the same that you wrote in the modified Transformation
Hello:

${FILES}/${MY_FILE}.csv

Remember that the variable ${FILES} was defined in the
kettle.properties file and the variable ${MY_FILE} was created in the Job
Entry that is going to be executed before this one.

d) Configuring the first of the two Abort Job Job Entries

The first Abort Job entry will be executed when there
wasn’t a parameter in the command line. What you will
configure here is the message containing the cause of
the abortion.

-In the Message textbox write:
The file name is missing

e) Configuring the second of the two Abort Job Job Entries
This Abort Job entry will be executed when the file doesn’t exist.

-In the Message textbox write this text:
The file ${FILES}/${MY_FILE}.csv
does not exist

In runtime, the tool will replace the variable
names by its values, showing for example:

The file c:/Pentaho/Files/list.csv
does not exist

f) Configuring the Hops

A Job Entry can be executed:
- unconditionally: it’s executed always
- when the previous Job Entry was successful
- when the previous Job Entry failed

This execution is represented by different colors in the Hops:

- a black Hop indicates that the following Job Entry is always executed
- a green Hop indicates that the following Job Entry is executed only if the previous
Job Entry was successful
- a red Hop indicates that the following Job Entry is executed only if the previous
Job Entry failed

As a consequence of the order in which the Job Entries of your Job were created
and linked, all of the Hops took the right color, that is, the Steps will execute as
you need:

-The first Transformation entry will be always executed (The Hop that goes
from Start toward this entry, is black)
-If the Transformation that gets the parameter doesn’t find a parameter, that is,
the Transformation failed, the control goes through the red Hop towards the
Abort Job entry.
-If the Transformation is successful, the control goes through the green Hop
towards the File Exists entry.
-If the file doesn’t exist, that is, the verification of the existence fails, the
control goes through the red Hop, towards the second Abort Job entry.
-If the verification is successful, the control goes through the green Hop
towards the main Transformation entry.

If you wished to change the condition for the execution of a Job Entry, the steps to
follow would be:

-Select the Hop that reach this Job Entry
-Right click the mouse, bringing a contextual menu
-In the menu, select Evaluation followed by one of the three available
conditions.

How does it work?

When you execute a Job, the execution is tied to the order of the Job Entries, the
direction of the Hops, and the condition under which an entry is or not executed.
The execution follows a sequence. The execution of a Job Entry cannot begin until
the execution of the Job Entries that precede it has finished.

In real situations, a Job can be a solution to solve problems related with sequence
of tasks in the Transformations: If you need that a part of a Transformation
finishes before another part begins, a solution could be to divide the
Transformation in two independent Transformations, and execute them from a Job,
one after the other.

Executing the Job

To execute a Job, in the first place you need to supply the parameter. As the only
place where the parameter is used is in the Transformation “get_file_name” (after
that you only use the variable where the parameter is saved) let’s write the
parameter as follows:
−Double click the “get_file_name” Transformation.
−The appearing window has a grid named Fields. In the first row write the name of
the file created in the Tutorial folder (without extension).

−Press OK.

Press the Run button.

A window appears with general information related with the execution of the Job.
Press Execute.
The Job log tabbed window appears beside the Job window.

The tabbed windows corresponding to Jobs, as those corresponding to
Transformations, are divided in two:

The upper half shows the Job Entries of your Job. For each executed Job Entry,
you’ll see, among other data, the result of the execution. As said, the execution of
the entries follows a sequence. In consequence, if an entry fails, you won’t see the
entries that follow because they never start.

In the second half of the window, you can see the log detail, including the starting
and ending time of the Job Entries. In particular, when an Entry is a
Transformation, the log corresponding to the transformation is also included.

At the time you see at the end of the log the text:

Spoon - Job has ended.

the new file has been created. If the input file was: list.csv, the output file should
be: list_with_greetings.xml and should be in the same folder. Find it and
check its content.

Change the name of the parameter. Replace it by a name of an inexistent file.
Execute the Job. You’ll see that the Job aborts, and the log shows the following
message:

Abort - The file <parameter> does not exist

Where <parameter> is the parameter you supplied.

Now try deleting the parameter, and executing the Job one more time. In this case
the Job aborts as well, and in the log you can see this message:

Abort - The file name is missing

just as you expected.

Kitchen

Kitchen is the tool used to execute Jobs from a terminal window. The script is
Kitchen.bat (Windows) or Kitchen.sh (other platforms), and you’ll find it in the
installation folder.
If you execute:

Kitchen

you’ll see a description of the command with a list of the available options.

To execute the Job, try the simplest command:

Kitchen /file <Jobs_path>/Hello.kjb <par> /norep

/norep is a command to ask Spoon not to connect to the repository.

/file precedes the name of the file corresponding to the Job to be executed.

<Jobs_path> is the full path of the folder Tutorial, for example:

c:/Pentaho/Tutorial (Windows)
or

/home/PentahoUser/Tutorial

<par> is the parameter that the Job is waiting. Remember that the expected
parameter is the name of the input file, without the csv.

The other options (i.e. log level) take default values.

After you enter this command, the Job will be executed quite in the same way it did
inside Spoon. In this case, the log will be written in the same terminal, unless you
redirect the log to a file. The format of the log text will vary a little, but the
information will be basically the same that you saw in the graphical environment.

Try to execute the Job:
−without parameters
−with an invalid parameter (an inexistent file)
−with a valid parameter
and verify that everything works as expected.
Also experiment the Kitchen command changing some of the options (i.e. log
level).

And this is the end of the tutorial. You build a Job that enhanced the
Transformation of the first part, and allowed you to know more elements of PDI,
essential for those who work with this tool day by day.

Conclusion

Now that you saw an overview of PDI, you are ready to get benefit of the tool
making your own projects.

For going beyond, I suggest you to turn to this sources:

User Manuals
The user manuals are in the folder \docs\English inside the installation
folder.

Examples
The folder Samples inside the installation folder, contains several examples.
This examples can be useful in order to understand how a particular Step
works, o to take them as a starting point for your own Transformations and
Jobs.

Forum
The Pentaho forum is an interesting knowledge source. There you can see
the problems that other people have faced and the way in which they can be
resolved.
You can also expose doubts or problems you have, or help other people after
you have acquired some experience with the tool.
You can reach the forum from this url:

http://forums.pentaho.org/forumdisplay.php?f=69

Besides this links, in the Welcome Screen you will find some extra sources.

I hope this tutorial had been useful for you to start working with PDI.

Comments, critics and suggestions are welcome,
Good luck!

http://forums.pentaho.org/forumdisplay.php?f=69

	License
	Author
	Preface
	Contents
	Introduction
	Installing PDI
	Meeting Spoon
	Repository and Files
	Starting Spoon

	Hello, World
	Task
	Preparing the Environment
	Step by Step
	How does it work?
	Verify, Preview and Execute!
	Pan

	Hello World again!
	Task
	Preparing the Environment
	A. Creating the transformation which takes the parameter
	B. Modificating the transformation Hello.ktr
	C. Building the main job
	How does it work?
	Kitchen

	Conclusion

