
Additive Regression Applied to a Large-Scale
Collaborative Filtering Problem

Eibe Frank1 and Mark Hall2

1Department of Computer Science, University of Waikato, New Zealand
2Pentaho Corporation, 5950 Hazeltine National Drive, Suite 340, Orlando, FL, USA

Email addresses to be disclosed

Abstract. The much-publicized Netflix competition has put the spot-
light on the application domain of collaborative filtering and has sparked
interest in machine learning algorithms that can be applied to this sort
of problem. The demanding nature of the Netflix data has lead to some
interesting and ingenious modifications to standard learning methods in
the name of efficiency and speed. There are three basic methods that
have been applied in most approaches to the Netflix problem so far:
stand-alone neighborhood-based methods, latent factor models based on
singular-value decomposition, and ensembles consisting of variations of
these techniques. In this paper we investigate the application of forward
stage-wise additive modeling to the Netflix problem, using two regression
schemes as base learners: ensembles of weighted simple linear regressors
and k-means clustering—the latter being interpreted as a tool for multi-
variate regression in this context. Experimental results show that our
methods produce competitive results.

1 Introduction

Collaborative filtering is a challenging application domain for machine learning
algorithms, which has gained prominence due to popular web-based recommen-
dation services. The Netflix competition represents a particularly interesting
instance of a collaborative filtering problem, in the form of a large movie recom-
mendation dataset that consists of actual movie ratings generated in production
use by real users.

The Netflix data is a very demanding problem for prediction methods, due
to its size and sparsity. It consists of movie ratings for 17,770 movies, with
100,480,507 ratings in total. The ratings have been provided by 480,189 users.
There are approximately 209 ratings for each user on average, so the data is
very sparse. It can be viewed as a very large, sparse matrix with 17,770 columns
and 480,189 rows. The task is to predict missing entries in this matrix, which
correspond to unknown ratings. These predictions can then be used to provide
recommendations to users.

One way of tackling this matrix completion problem is to view it as a re-
gression task where the known ratings for a user are used to predict the missing
ratings based on a regression model. This is the approach we investigate in this

paper. Although the data can be held in memory in less than 1GB if it is stored
in sparse form based on index-value pairs—using the data type short for the
indices and the data type byte for the actual data values (all movie ratings are
in the set 1, 2, 3, 4, 5)—it is a challenging task to build regression models for it. In
this paper we present two regression schemes, both based on forward stage-wise
additive modeling (FSAM) [6], that are efficient enough to be applicable to this
data. The first method uses FSAM in conjunction with an ensemble of simple
linear regression models. In the second method, FSAM is used in conjunction
with the k-means clustering method.

The paper is structured as follows. In the next section we describe two vari-
ants of the FSAM method, one for uni-variate prediction, and one for multi-
variate prediction. In Section 3 we present our ensemble of simple linear regres-
sion functions, a heuristic base learner for the uni-variate FSAM scheme, and
give some results obtained on the Netflix data. In Section 4 we describe how we
applied k-means clustering in conjunction with the multi-variate FSAM scheme
and present results. Section 5 briefly describes some related work. Section 6 has
some conclusions.

2 Regression using forward stage-wise additive modeling

Forward stage-wise additive modeling (FSAM) [6] is a simple technique for fitting
an additive model to a given prediction problem. In the case of classification, it
is closely related to the well-known boosting methodology. Here we consider the
regression version (see Equations 6 and 7 in [6]).

The output of the FSAM scheme is a collection of prediction models, i.e. an
ensemble. In the following we call these individual models “base models”. The
base models are regression models that predict a numeric target based on a given
set of independent variables. In this section we assume that we have suitable
algorithms for fitting base models to the data. The corresponding algorithms we
used for the Netflix problem are discussed in the next two sections.

The FSAM algorithm for additive regression is a greedy algorithm for fitting
an ensemble of base models to a given regression problem. Base models are
fit in a stage-wise manner, where each model in the sequence is trained on a
transformed target consisting of the residual errors that remain from the models
built so far. It is assumed that there is an implicit 0th model in the sequence that
simply predicts the mean target value observed in the training data. Ensemble
predictions are formed by simply adding the predictions of the base models in
the sequence formed so far.

Assuming the algorithm used for building the base models minimizes the
squared error of the respective residual-based predictions problems, the FSAM
algorithm for regression greedily minimizes the squared prediction error of the
ensemble as a whole.

The algorithm described so far predicts a single target based on some inde-
pendent variables. It can be applied to the Netflix data on a per-movie basis,
treating each movie individually as a target. However, the Netflix problem is es-

sentially a matrix completion problem, where we would like to predict all missing
entries for a user based on the existing entries, and we would like to predict them
simultaneously because this would be computationally much more efficient. For-
tunately it is straightforward to adapt the FSAM method to model multiple
targets simultaneously, assuming the base learner is able to also do so: rather
than working based on residuals of a single target variable only, we consider the
residuals of all variables simultaneously. In each iteration of the FSAM method,
a (sparse) matrix consisting of residual errors is passed to the base learner, which
then builds a base model that approximates this matrix. The resulting residuals
are then used in the next iteration, and so on. At prediction time, the predic-
tions of the base models are again simply added together. In Section 4 we show
how the k-means clustering algorithm can be used as the base learner in this
multi-variate scheme.

As with many other learning algorithms, the FSAM method can suffer from
overfitting. In practice, on the Netflix data, it is generally the case that the error
of the FSAM ensemble decreases at first as more iterations are performed (i.e.
more ensemble members are used), but it starts to increase after a certain point.
A standard trick to delay the point of overfitting, thus making it possible to
perform more iterations and potentially build a more accurate ensemble, is to
apply shrinkage to the residuals [6]. In this case, the residuals remaining from the
previous FSAM iteration are multiplied by a shrinkage parameter with a value
in (0, 1] before being passed to the base learner (see Equation 7 in discussion
section of [6]). We will investigate the effect of the shrinkage parameter in our
experiments with k-means in Section 4.

3 Ensembles of weighted simple linear regressors

The Netflix data is very high-dimensional: there are 17,770 possible movie rat-
ings. This means it is desirable to apply a base learning algorithm in the FSAM
method that is computationally efficient in the number of attributes. Another
feature of this data is the large number of missing values: on average, the 480,189
users in this data have rated only about 209 movies. This means it is essential
to exploit data redundancy at prediction time, making use of “redundant” at-
tributes (i.e. columns in the matrix that correspond to different movies). This
section presents a very simple and fast heuristic base learner that we have used
successfully to apply the FSAM method to the Netflix data.

The basic idea is to to build a single simple linear regression model for each of
the movies in the data, excluding the movie for which we want to predict ratings,
to form an ensemble of (17,770 - 1) predictors. The simple linear regression
models can be built very quickly: computing the sufficient statistics for a simple
linear regression model requires a single pass through the (sparse) data.

Based on this ensemble of simple linear predictors it is then necessary to form
an overall prediction for a new test case—a target movie rating for a particular
user. Obviously only those linear regression models can be used to generate this
prediction for which ratings for the user concerned are available in the training

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

W
ei

gh
t o

f S
im

pl
e

Li
ne

ar
 R

eg
re

ss
io

n
M

od
el

Value of Coefficient of Determination

Fig. 1. Function used to compute weight of one simple linear regression model.

data. The most straightforward strategy is to simply average the predictions
of the corresponding linear regression models. However, a straight unweighted
average does not perform very well. Instead, we found that a simple weighting
strategy produced much better results: each linear regression model’s prediction
is weighted based on the coefficient of determination of the linear model (i.e.
the square of the correlation coefficient). It can be computed based on the same
sufficient statistics as the linear regression model.

Assuming a value R2 for the coefficient of determination, we compute the
weight of a particular model as as R2/(1−R2). This means that more predictive
linear regression functions get a higher weight in the ensemble. The weight as a
function of R2 is shown in Figure 1. Using just R2 as the weight did not appear
to give a sufficiently high weight to the most accurate models among the different
movie predictors. Hence we adopted this non-linear transformation function.

We also found that it is beneficial to discard simple linear regression models
from the ensemble for which we have less than a certain number of movie ratings
in the training data (i.e. models that do not have sufficient support in the training
data). For the results in this paper we discarded all models that were based on
less than 50 training instances.

Moreover, significantly improved performance was obtained by a simple data
normalization step that is fairly standard for the Netflix data, namely by “cen-
tering” the input data for each user in the following way: for each user, a
smoothed mean of the movie ratings for that user was subtracted from each
rating for that user, and the maximum rating possible (the value 5) was added
to the result. Assuming the user mean was µu, and nu movie ratings were given

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 1 2 3 4 5 6 7 8 9 10

R
M

SE
 o

n
Pr

ob
e

Se
t

Number of Iterations of Uni-variate Additive Regression

Fig. 2. Root mean squared error on probe set for uni-variate additive regression applied
to ensembles of weighted simple linear regression models.

for that user in the training data, the smoothed user mean was computed as:
(1− 1/(nu− 1))×µu +(1/(nu− 1))× 3. At prediction time, the smoothed mean
for the corresponding user was added to the prediction obtained from the model
and the value 5 subtracted from this. Resulting values outside the [1,5] interval
were clipped. All the results that are stated in this section are based on data
normalized in this fashion.

The resulting ensemble learner gives reasonable performance. It produces
a root mean squared error (RMSE) of 0.955 on the Netflix probe set when the
probe set is eliminated from the full training set so that an unbiased performance
estimate can be obtained.1 However, we can plug it into the uni-variate FSAM
method from the previous section to obtain improved performance. In this case,
the ensemble of simple linear regression models is not applied to model the values
of the target movie directly; instead, it used to model the residual errors in the
target predictions computed in the forward stage-wise additive modeling strat-
egy. Applying this method to predicting the probe data, by building a model for
each of the 17,700 possible target movies using 5 iterations of additive modeling,
results in an RMSE of 0.924 on the probe data. This is in the same ball park as
results obtained using variants of singular value decomposition [10, 9].

Figure 2 shows the RMSE on the probe set as the number of FSAM itera-
tions is increased. These results were obtained without any shrinkage applied to

1 The probe set specifies a validation set for models built for the Netflix problem and
consists of 1,408,395 ratings from the full dataset, leaving 99,072,112 ratings for
training.

the residuals in the FSAM method. We can see that after a certain number of
iterations performance starts to deteriorate, indicating that overfitting occurs. It
is possible to delay the point at which the error starts to increase by performing
shrinkage, leading to further small reductions in error. We investigate the effect
of shrinkage in more detail for the multi-variate case in the next section.

4 Modeling multiple targets simultaneously with k-means

A major drawback of the modeling strategy described in the previous section is
that it requires building a separate additive model for each of the possible target
movies. Given the large number of possible targets this is a time-consuming pro-
cess. A much more efficient approach is to model all targets simultaneously by
building a multi-variate model, a model that can be used to predict an arbitrary
element in the data matrix. In the context of forward stage-wise additive mod-
eling this only requires us to adopt an appropriate multi-variate base learner: as
described in Section 2, it is trivial to modify the stage-wise modeling process to
work with multiple residuals.

It turns out that there is a well-known modeling technique that slots nicely
into this multi-variate version of the FSAM method, namely k-means clustering.
It is well-known that k-means clustering finds cluster centers that represent a
local minimum of the sum of squared differences to the cluster centers over all
training examples. This is exactly what is required from the base learner in the
FSAM method: we can simply cluster users according to the residual errors in the
movie ratings obtained in the FSAM method (i.e. k-means clustering is applied
to the matrix of residuals remaining in a particular FSAM iteration). The cluster
centers are used for prediction: a user is assigned to its nearest cluster centroid
based on the residuals that remain from the predictions of the previous ensemble
members, and missing residuals for that user can be filled in based on the values
stored in that centroid.

The Netflix data is sparse, with many missing values, and the basic method
needs to be adapted to deal with this. Fortunately, this is simple: missing values
are simply skipped in the distance calculation and in the process of computing
the mean residuals stored in the cluster centroids. This also makes the process
very efficient due to the sparse representation of the data that is used.

We found that basic k-means produced good results when used in this fashion.
However, small improvements can be obtained by applying a global smoothing
strategy when computing the cluster centroids: instead of using the per-cluster
mean of residuals as the corresponding value for the cluster centroid, we smooth
it with the global mean of residuals for the corresponding movie, obtained from
all the values for the corresponding movie stored in the matrix. For the experi-
mental results given below, we used a weight of 1/(1 + nm) for the global mean,
where nm is the number of observed movie ratings for movie m, and one minus
this weight for the local mean, when computing the smoothed cluster centroid.

Note that the idea of applying k-means to the Netflix data is not new (see,
e.g, [10, 9]). However, what we propose here is to use k-means as the base learner

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 5 10 15 20 25 30 35

R
M

SE
 o

n
Pr

ob
e

Se
t

Number of Iterations of Multi-variate Additive Regression

No shrinkage

2 clusters per iteration
4 clusters per iteration
8 clusters per iteration

16 clusters per iteration

Fig. 3. Root mean squared error on probe set for multi-variate additive regression
without shrinkage applied to k-means.

in the FSAM method. The k-means clustering algorithm is used to find centroids
of the residuals produced in the FSAM modeling process, and these centroids
are also used at prediction time. On the probe set, stand-alone k-means gets an
RMSE of 0.962 with k = 16 and 0.959 with k = 32. We will see that better
results can be obtained by using it in conjunction with additive regression.

There are several parameters in the multi-variate FSAM method with k-
means: the number of FSAM iterations, the shrinkage value used in the FSAM
method, and the number of cluster centers. Another parameter is the number
of iterations of the k-means algorithm, but our experiments indicate that this
parameter is less important. We fixed it at 40 iterations for the results discussed
in the following.

Before presenting the actual RMSE values on the probe set we obtained, let
us summarize our findings. We found that it is possible to get good results for
different values of k when using k-means in conjunction with the FSAM method.
Generally speaking, the larger the value of k, the fewer additive modeling itera-
tions where required to achieve a certain level of performance. However, it was
also necessary to adjust the shrinkage value of the additive modeling strategy
appropriately. Lower shrinkage values were required for more iterations/cluster
centers, to avoid overfitting.

Figure 3 shows the effect of increasing the number of FSAM iterations, for
different numbers of clusters (i.e. values of k), keeping the shrinkage parameter
fixed at 1 (i.e. no shrinkage). Figure 4 shows the same for a shrinkage value
of 0.5, and Figure 5 the results for a shrinkage value of 0.25. The results are
consistent with our above summary. It is beneficial to use more iterations of the

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 5 10 15 20 25 30 35

R
M

SE
 o

n
Pr

ob
e

Se
t

Number of Iterations of Multi-variate Additive Regression

Shrinkage Value 0.5

2 clusters per iteration
4 clusters per iteration
8 clusters per iteration

16 clusters per iteration

Fig. 4. Root mean squared error on probe set for multi-variate additive regression with
shrinkage factor 0.5 applied to k-means.

FSAM method and/or more cluster centers, provided the value of the shrinkage
parameter is adjusted appropriately.

In our experiments we obtained an RMSE value of 0.901 by using 4096 itera-
tions of k-means, with k=2, and a shrinkage value of 0.05. Further improvements
can be obtained by building multiple additive models using different random
number seeds and/or values of k for k-means and averaging their predictions.
In this fashion, it is possible to obtain RMSE values below 0.9 on the probe
data as well as the actual Netflix test data, which is used in the Netflix com-
petition to evaluate submissions. This appears to be competitive with the best
single-paradigm learning schemes that have been evaluated on this data. The
best results on the Netflix data so far appear to have been obtained based on
large heterogeneous ensembles of diverse learning schemes [1, 10, 9]. Our schemes
could be used as part of such ensembles.

We also experimented with a variant of bisection k-means, an efficient method
of applying k-means in a recursive fashion to obtain multiple clusters. In this
method, k-means is applied recursively with k=2 to build a tree of clusters in
a divide-and-conquer fashion. We investigated this method because it makes
it possible to apply a more fine-grained smoothing procedure, where a cluster
center is smoothed by blending it with the cluster centers occurring in the path
from the root node to its corresponding node in the tree. However, when we
used this method in conjunction with additive regression, we did not observe
significant increases in performance.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 5 10 15 20 25 30 35

R
M

SE
 o

n
Pr

ob
e

Se
t

Number of Iterations of Multi-variate Additive Regression

Shrinkage Value 0.25

2 clusters per iteration
4 clusters per iteration
8 clusters per iteration

16 clusters per iteration

Fig. 5. Root mean squared error on probe set for multi-variate additive regression with
shrinkage factor 0.25 applied to k-means.

5 Related work

As mentioned before, k-means has previously been applied to the Netflix data.
However, there is also some work on using versions of the FSAM method for
this data. Dembczynski et. al. [3] investigate ensembles of decision rules for
ordinal classification constructed using FSAM. They present two approaches,
one based on AdaBoost [4], and the other based on Friedman’s gradient boosting
machine [5]. The effectiveness of the methods is evaluated on the Netflix data,
but only on a small subset of the total number of movies. This makes it difficult
to judge how the performance of these methods compares with others on the full
Netflix probe set.

Paterek [9] discusses using a linear regression model constructed for each
movie. His method differs from the base learner we propose for our first method
in three ways: firstly, a multiple linear regression is built for each movie based
on binary vectors, that, for each user, indicate the movies that they have rated.
Secondly, the prediction for a given rating is adjusted based on a weight propor-
tional to the number of movies the user in question has rated. Finally, the model
parameters are learned using gradient descent, which means that the method is
relatively slow.

Nearest neighbor methods for collaborative filtering are discussed in [2]. For
discussion of latent factor models, as applied to the Netflix problem, the reader is
referred to [7–11]. Homogeneous and heterogeneous ensembles of neighborhood-
based methods and latent factor models are discussed in [9–11].

6 Conclusions

This paper has discussed the use of forward stage-wise additive modeling (FSAM)
in conjunction with regression schemes for uni-variate and multi-variate predic-
tion on a large-scale collaborative filtering problem, namely the Netflix movie
ratings data. Both regression schemes we investigated, ensembles of simple linear
regressors for uni-variate prediction and k-means for multi-variate prediction, are
fast enough to make FSAM tractable for this application. Results on the Netflix
probe set show that both methods achieve good performance. Additive regres-
sion with k-means is a particularly attractive scheme because it makes it possible
to build a single multi-variate prediction model for the data—effectively a single
model that approximates the target matrix and can be used to fill in missing
entries in this matrix.

References

1. Robert Bell, Yehunda Koren, and Chris Volinsky. Chasing $1,000,000: How we won
the Netflix progress prize. ASA Statistical and Computing Graphics Newsletter,
18(2):4–12, 2007.

2. Robert M. Bell and Yehuda Koren. Improved neighborhood-based collaborative
filtering. In KDD Cup and Workshop at the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2007.

3. Krzysztif Denbczynski, Wojciech Kotlowski, and Roman Slowinski. Ordinal clas-
sification with decision rules. In Proceedings of the 3rd International Workshop on
Mining Complex Data, pages 169–181. Springer, 2008.

4. Yoav Freund and Robert Shapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

5. Jerome Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5):1189–1232, 2001.

6. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting (with discussion and rejoinder by the authors).
Annals of Statistics, 28(2):337–407, 2000.

7. Miklos Kurucz, Andras A. Benczur, and Karoly Csalogany. Methods for large scale
svd with missing values. In KDD Cup and Workshop at the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2007.

8. Yew Jin Lim and Yee Whye Teh. Variational Bayesian approach to movie rating
prediction. In KDD Cup and Workshop at the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2007.

9. Arkadiusz Paterek. Improving regularized singular value decomposition for collab-
orative filtering. In KDD Cup and Workshop at the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2007.

10. Gabor Takacs, Istvan Pilaszy, Bottyan Nemeth, and Domonkos Tikk. On the
gravity recommendation system. In KDD Cup and Workshop at the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2007.

11. Mingrui Wu. Collaborative filtering via ensembles of matrix factorizations. In
KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2007.

