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Abstract—Scheme-specific attribute selection with the wrap-
per and variants of forward selection is a popular attribute
selection technique for classification that yields good results.
However, it can run the risk of overfitting because of the extent
of the search and the extensive use of internal cross-validation.
Moreover, although wrapper evaluators tend to achieve superior
accuracy compared to filters, they face a high computational
cost. The problems of overfitting and high runtime occur in
particular on high-dimensional datasets, like microarray data.

We investigate Linear Forward Selection, a technique to
reduce the number of attributes expansions in each forward se-
lection step. Our experiments demonstrate that this approach is
faster, finds smaller subsets and can even increase the accuracy
compared to standard forward selection. We also investigate
a variant that applies explicit subset size determination in
forward selection to combat overfitting, where the search is
forced to stop at a precomputed “optimal” subset size. We
show that this technique reduces subset size while maintaining
comparable accuracy.

I. INTRODUCTION

Until recently, classification tasks with more than 50

attributes were considered to have a high dimensionality. This

is no longer the case. The number of different applications

with thousands of attributes is rising, as exemplified by

microarray or text classification, and creates a need for

techniques that are able to handle a much larger number of

attributes. While performing a search for a good attribute

subset, it is necessary to evaluate attributes and sets of

attributes. Wrappers are a popular type of evaluator: they

calculate a score for a subset by inducing a classifier using

only those attributes. Wrappers tend to lead to superior

accuracy, but need high computational effort, compared to so-

called filter methods. Filters use statistical characteristics of

the data for evaluation that are independent of the classifier.

In the attribute selection methods presented in this paper,

we modify the standard search technique known as forward

selection to yield a computationally efficient wrapper-based

attribute selection method for high-dimensional data. To this

end we reduce the number of attribute extensions in each

step of the forward search. Our experimental results show

that this approach leads to competitive results, requires less

runtime, and results in less overfitting compared to complete

forward selection.

Previous research indicates that extensive search using

the wrapper suffers from overfitting [see 15, 7, 18]. Our

experiments confirm this, especially in datasets with many
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irrelevant attributes and a small number of instances, such

as microarray data. To further reduce the amount of overfit-

ting we modify our new search techniques based on ideas

presented in [20]: we precompute an “optimal” subset size

based on cross-validation, and then perform a forward search

up to that particular size. Our experiments show that this

approach is competitive to a classical wrapper-driven forward

selection, and leads to smaller attribute subsets.

This paper is organized as follows. Section II presents

related work on improving the wrapper. Our new methods

are introduced in Sections III and IV. Section V provides an

analysis of the experimental results, followed by Section VI,

which summarizes our findings.

II. RELATED WORK ON SPEEDING UP THE WRAPPER

To reduce the number of subset evaluations, [11] propose a

forward search approach that works in two steps. In the first

step, all attributes are ranked. This can be done either with

a filter method, or with the wrapper. In the second step the

algorithm builds N attribute subsets: the first set is the top-

ranked attribute, followed by the two top-ranked attributes,

the three top-ranked attributes, and so on. These subsets

are evaluated using the wrapper, or a filter method that can

evaluate sets of attributes. The authors use this technique

to compare various filter techniques to the wrapper. With

2 × N evaluations, this algorithm known as Rank-Search is

quite fast, but chooses relatively large subsets (see results in

Section V-C).

A similar method, called BIRS, is presented in [24]. Again,

an initial ranking is produced based on a filter method or

the wrapper. The second step constructs attribute subsets

and uses the wrapper for evaluation. Similar to the previous

method, the algorithm starts with the top-ranked attribute and

regards the remaining attributes in order of the ranking, but

it only adds an attribute if it improves the current subset

significantly. This method also requires 2×N evaluations, but

generates smaller subsets than Rank-Search (see Section V-

C). Different criteria for deciding whether a newly expanded

subset is significantly better than the current subset were

studied in [4].

Further research on the wrapper was done using ran-

domized search. RVE, a randomized wrapper algorithm that

is designed for datasets with a large number of irrelevant

attributes, is presented in [26]. Huerta et. al [12] first apply

fuzzy logic for pre-selecting attributes in microarray data,

and then apply a genetic algorithm that uses a wrapper. The

same idea of first building a pool of promising attributes and

then applying a genetic algorithm to that pool is used in [27].



(a) The fixed-set technique (b) The fixed-width technique

Fig. 1. Linear Forward Selection

III. LIMITING THE NUMBER OF SUBSET EXPANSIONS IN

FORWARD SELECTION

We consider a frequently used forward selection algorithm

called Sequential Forward Selection (SFS). SFS performs a

simple hill-climbing search. Starting with the empty subset,

it evaluates all possible single-attribute expansions of to the

current subset. The attribute that leads to the best score is

added permanently. The search terminates when no single-

attribute expansion improves on the current best score. Like

[14], we define improvement as an accuracy enhancement of

at least ǫ, compared to the current score (we use ǫ = 0.0001).
We further applied our approach to best-first search [14],

as well as Sequential Floating Forward Selection [22], and a

combination of both. For clarity, we omit these approaches

in this paper, as they lead to similar results. Results for these

methods can be found in [9].

In the classical SFS approach, the number of evaluations

grows quadratically with the number of attributes N : the

number of evaluations in each step is equal to the number

of remaining attributes that are not in the currently selected

subset. The currently selected subset grows with each step,

until the algorithm terminates. In the first step, we perform N

subset evaluations, in the second step N −1 and so on. Thus

the upper bound on the number of evaluations is
∑

N

i=0
(N −

i) = 1

2
× N(N + 1).

This quadratic growth can be problematic for datasets with

a large number of attributes. In our first approach, called

Linear Forward Selection, we limit the number of attributes

that are considered in each step so that it does not exceed

a certain user-specified constant. This drastically reduces the

number of evaluations, and therefore improves the runtime

performance of the algorithm. We investigate the following

two methods for limiting the number of attributes.

1) Fixed Set: Here, we initially rank all attributes and

simply select the top-k ranked attributes as input to forward

selection. The initial ranking is performed by evaluating each

attribute individually and ranking the attributes according to

their scores. Scores can obtained using a wrapper evaluator

on a per-attribute basis (as we do for the experiments in this

paper) or using a filter criterion. Only the k best attributes are

employed in the subsequent forward selection and the rest is

discarded. This very simple method reduces the upper bound

on the number of evaluations considered during the search

process to 1

2
× k(k + 1), regardless of the original number

of attributes. The motivation for this approach is to take

away most of the irrelevant attributes. Then the algorithm

is able to focus on the remaining, relevant attributes—those

with sufficiently high scores. A disadvantage is that we may

lose weakly relevant attributes that perform poorly on their

own, but may enhance overall classification performance

when coupled with other attributes. Also, k may not be

large enough to comprise all relevant attributes. However,

the experimental results in Section V-A show that the per-

formance of this method is competitive to a full forward

selection on the datasets we tested. Note that the overall

number of evaluations is linear in N because all attributes

need to be considered for the ranking. We call this first

variant of Linear Forward Selection the “fixed-set technique”

because the available attributes are reduced to a fixed set of

size k. The method is illustrated in Figure 1(a): the number

of potential subset extensions decreases with each step, as in

SFS, while the currently selected subset grows.

2) Fixed Width: This method keeps the number of exten-

sions in each forward selection step constant to a fixed width

k (see Figure 1(b)). Again, an initial ranking is calculated

based on the single attribute evaluation scores, and the search

starts with the top-k attributes. However, in each of the

subsequent forward selection steps, we increase the number

of attributes that are considered by one, by adding the

next best attribute in the ranking to the set of candidate

expansions. This ensures that the set of candidate expansions

consists of the individually best k attributes that have not

been selected so far during the search. This increases the

theoretical upper bound for the number of evaluations in the

forward search process to N ×k− 1

2
×k(k−1). The second

term is necessary because the number of available attributes

is less then k in the last k steps of the search. This approach

handles strongly relevant attributes first, but as the search

proceeds, more attributes with individually weaker scores are

taken into account.

IV. EXPLICIT SUBSET SIZE DETERMINATION IN

FORWARD SELECTION

Ng [20] estimates theoretical error bounds for the standard

wrapper approach when used in conjunction with exhaustive

search. He develops a search algorithm called ORDERED-FS

that has a lower error bound in the case of many irrelevant

attributes. ORDERED-FS randomly splits the dataset D

into a set DTrain for training and a hold-out set DTest.

However, in contrast to the standard wrapper, attribute sets

are evaluated on the training data DTrain to decide on

expansions during the search. Only the best subset of each

subset size is evaluated on the hold-out data, and the best of

these is what is output by the algorithm. Hence this method

only uses the test data to choose between subset sizes.

[20] shows that ORDERED-FS has a smaller sample

complexity than the standard wrapper, i.e. it finds a hy-

pothesis faster and with fewer training examples than the



standard wrapper approach. [20] suggests that this holds for

standard wrapper evaluation via cross-validation as well, as

it asymptotically yields a constant improvement over a test

set. However, performing an exhaustive search makes this

algorithm intractable on most real-world data.

A. Forward Selection with Size Determination

We adapt ORDERED-FS by using m-fold cross-validation

rather than a single train/test split and forward selection

rather than exhaustive search. The algorithm performs m

forward selections, one for each of the training sets in the

cross-validation. The training data is used to decide which

attribute is added in each iteration of forward selection, and

the test data is only used to evaluate the “best” m best subsets

of a particular size. To determine the “optimal” subset size,

we average the m scores on the test data for each subset

size, and choose the size with the highest average. Then, a

final forward selection is performed on the complete dataset

to find a subset of that optimal size. The resulting attribute

set is output by the algorithm.

The m runs of forward selection may stop at different

subset sizes. We restart all those runs that have a smaller

subset size than the largest one found, and force them to

continue to that size. Similary, the termination criterion for

the final forward search is the optimal subset size. Thus the

evaluation score may decrease during the search.

Note that the algorithm just presented is an attribute subset

search technique that can theoretically be used with any

subset evaluator. Its computational cost is higher than the

cost of a simple forward selection because of the two stages

involved (m-fold cross-validation + final search). We are

using the standard cross-validation based wrapper for the

final search. To reduce the runtime a fast wrapper evaluator

is employed for computing the optimal size, as described in

Section V-B.

Note also that we are not the first to propose an

ORDERED-FS-inspired method to yield a practical algo-

rithm. [28] evaluate a hybrid filter-wrapper method on the

leukemia dataset, where they rank all attributes based on a

filter criterion. They observe that using too many of the top-

ranked attributes leads to overfitting. Facing the problem of

how many attributes to choose, they adapt the ORDERED-

FS search approach to calculate the best cardinality n using

leave-one-out cross-validation. In each fold, [28] calculates

a filter-based ranking and evaluates all possible subset sizes

with the wrapper on the test data. Then n is set to the

subset size that leads, on average, to the best accuracy. [28]

shows that selecting the top n attributes of the initial ranking

on the whole training data leads to good results. However,

in contrast to our method this approach can essentially

be classified as a filter method for attribute selection: the

wrapper is only used to decide how many of the filter-ranked

attributes to use to build the final classifier, and attribute

dependencies are thus only taken into account in a very

limited fashion.

1: Perform m-fold cross-validation split on data D:

2: D → (D
(1)
Train

, D
(1)
Test

), (D
(2)
Train

, D
(2)
Test

), . . . (D
(m)
Train

, D
(m)
Test

)
3:
4: ⊲ STEP 1: COMPUTE OPT.-SIZE
5: for all folds i = 1 to m do

6: Generate ranking R
D

(i)
Train

on training data D
(i)
Train

7: Si = LinearForwardSelection(D
(i)
Train

, R
D

(i)
Train

, k)

8: proceed all i forward selections until |Si| = max1≤i≤m|Si|
9:
10: for all folds i = 1 to m do

11: for all subsets S′
i
= Si and preceding subsets of Si do

12: scoreS′

i

= evaluate(S′
i
, D

(i)
Train

, D
(i)
Test

)

13: avgScoren = mean score for subset size n
14: optSize = subset size n with max avgScoren

15:
16: ⊲ STEP 2: FORW.-SELECTION UP TO OPT.-SIZE
17: Generate ranking RD on data D
18: S = LinearForwardSelectionToSize(D,optSize,RD , k)
19: return S

Fig. 2. Linear forward selection with explicit subset size determina-
tion. LinearForwardSelection(D,R, k) denotes a forward selection
with a limited number of k attributes, based on the ranking R, us-
ing either the fixed-set or the fixed-width technique from Section III.
LinearForwardSelectionToSize(...) uses a given subset size as ter-
mination criterion and outputs a subset of that size, evaluate(S, D1, D2)
delivers the accuracy of the classifier on the data D2, trained on the data
D1, using only the attributes in S.

B. Linear Forward Selection with Subset Size Determination

ORDERED-FS addresses the overfitting problem in the

context of many irrelevant attributes. Even though the results

of our adapted version are promising (see Section V-B), the

search still tends to overfit in the case where the data has

a small number of instances. Like standard wrapper-based

forward selection, it can also be relatively slow. We therefore

combine it with Linear Forward Selection, the method for

reducing the number of subset expansions from Section III.

Figure 2 shows the pseudo code for Linear Forward

Selection with Subset Size Determination. As in Section III,

limiting the number of subset extensions is based on an initial

ranking of the attributes. We perform one ranking for each of

the m + 1 forward selections. Since each forward selection

runs on different training data, each ranking will be different,

and the runs may thus operate with different attributes.

Alternatively, one could use a single ranking generated on

the complete data. In doing so, all forward searches on the

inner folds would search different training data, but with the

same attribute ranking. However, this approach yields similar

accuracy (see [9] for details).

V. EXPERIMENTAL RESULTS

We have implemented our new algorithms within the

WEKA framework [6], which provides various attribute se-

lection techniques such as forward selection and the wrapper

subset evaluator.

1) Evaluating the Search Result: All experiments in this

paper are based on a stratified 5-fold cross-validation. Thus,

each attribute selection method is applied five times on sub

samples of the training set. The resulting attribute subsets

are evaluated on the corresponding test sets, which have not



Datasets Field #Attr #Inst #Class

CNS microarray-data [21] 7129 60 2
DLBCL microarray-data [23] 7399 240 2
Leukemia microarray-data [8] 7129 72 2
Lung-Cancer microarray-data [3] 7129 96 2
MLL-Leukemia microarray-data [1] 12582 72 3
Prostate-Cancer microarray-data [25] 12600 102 2

20News[small] text-classification [2] 2572 180 20
Reuters[small] text-classification [17] 2748 438 7

Arrhythmia ECG & patient-data [10] 279 452 13
Coil-20[small] image-recognition [19] 1024 240 20
Internet[small] img-size, url-phrases [16] 1558 1093 2
Splice-Site dna-data [5] 408 2000 2

TABLE I

THE DATASETS.

been seen by the method previously. Using 5-fold cross-

validation instead of 10-fold cross-validation leads to reason-

able estimates [see 13], with only slightly increased variance.

We repeat the cross-validation at least 2 times and up to 5

times, depending on the size of the dataset concerned and

the number of attributes it contains. Due to time limitations,

it was not possible to apply 5 repetitions of cross-validation

in all cases. However, the same number of cross-validation

repetitions as well as identical sub samples were used for

comparing different methods on the same dataset. We use a

paired t-test to identify significant differences (significance

level is 0.05).

2) Wrapper Subset Evaluation: Two different variants

of the wrapper were used to compute the accuracy of the

induced classifier, i.e. the evaluation score of a subset; note

that both variants are applied to the training sub samples of

the (outer) 5-fold cross-validation.

- The wrapper using cross-validation corresponds to the

WEKA-implementation using default settings. It evalu-

ates subsets as proposed by [14] and performs an inner

stratified 5-fold cross-validation on the data that is used

by the search. The classifier is applied on each fold, i.e.

it is built on the training set and accuracy is estimated by

classifying the test set. As long as the standard deviation

divided by the mean exceeds 1%, the cross-validation is

repeated up to 5 times. This evaluator is used by default

in most of our experiments.

- The simple wrapper assigns the training accuracy of

the wrapped classifier as the subset evaluation score.

The classifier is trained on the complete training data

and the same data is used to estimate accuracy. This is

much faster than using a cross-validation, but leads to

a more optimistic score. This evaluator is only used in

Section V-B.

3) Classifiers: The experiments in this paper are per-

formed with naive Bayes (NB) and C4.5, two different

classifiers that are often used to perform attribute selection

with the wrapper. Both algorithms are used as implemented

in WEKA, and all parameters set to their default values.

4) Datasets: We use 12 high-dimensional datasets from

different fields, shown in Table I. The number of attributes

ranges from 279 up to 12600. Datasets that are available as

separate training and test sets have been joined together. As

well as the new techniques presented in this paper, we also

applied complete forward selection using the wrapper for

comparison purposes. It was therefore necessary to reduce

the number of instances for some of the datasets. This was

done by removing stratified samples of the data. Prepro-

cessed data is marked with the tag [small]. Additionally,

the textual information of the text classification datasets

was converted into numerical attributes, using the string

converter in WEKA. The minimum frequency of each term

was restricted to 10 in the 20 Newsgroups dataset, and to 7

in the Reuters-21578 dataset. Splice-Site is a dataset created

from DNA data, which was used in [5] to apply backward

feature elimination. We processed the raw DNA sequences

by transforming each position into 4 binary attributes, one

for each nucleotide.

A. Linear Forward Selection

We first compare the fixed-set and fixed-width methods for

Linear Forward Selection, as well as a full forward selection.

Figure 3 shows the results we obtained for different values of

k—10, 50, 100, 200. “All” refers to the full forward selection

search. Each group of 8 bars are sorted by k, in each case

showing the fixed-set technique first, followed by the fixed-

width technique for the same value k. We show classification

accuracy, number of subset evaluations performed, and size

of the final attribute sub set. The bars in the graph for

accuracy show both accuracy on the training data (lighter

shades) and test data (darker shades). This is possible because

training accuracy was never greater than test accuracy in

any of the runs of 5-fold cross-validation. We consider the

difference in the training and test accuracy as a measure of

overfitting.

Comparing to the results for “all” shows that limiting

the number of attributes generally has a very beneficial

effect on forward selection: the number of evaluations de-

creases dramatically and accuracy on the test data remains

competitive. Increasing k often only increases accuracy on

the training data, not the test data, indicating overfitting.

In some cases, like the DLBCL data, accuracy on the test

data actually decreases. However, the text datasets and Coil-

20[small] show that k = 200 may not be large enough in

some cases, because the highest accuracy is obtained using

a full search. Despite the high sensitivity of the standard t-

test in this setting, we only observed significant differences

in test accuracy on the two text classification datasets: using

naive Bayes on Reuters[small], it is significantly better to use

all attributes than to impose a limit (this holds for most values

of k); on 20News[small], k = 200 with the fixed-width

technique leads to significant better accuracy than k = 10
for the fixed-set technique; and, applying C4.5, there is one

significant loss when using a small value for k instead of a

full search on each of the two text datasets.

The main benefit of Linear Forward Selection is the

reduction in computational effort. Compared to k = 10,
using all attributes requires 9.5 times more subset evaluations
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Fig. 3. SFS results for different values of k (explained in Section V-A)
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Fig. 4. SFS and SFS-BF results using naive Bayes for the 20News[small]

dataset.

on average. The real speedup is even higher, as evaluating

larger attribute subsets requires more computational effort

than smaller ones. However, another substantial benefit of

Linear Forward Selection is that it can reduce subset size:

small values of k generally result in fewer selected attributes,

especially for C4.5.

Closer inspection of the results shows that there is a

difference between datasets with few class values and those

with more, most likely reflecting the fact that the latter group

of datasets has a more complicated structure that is more

difficult to classify. We now consider these two groups of

datasets separately, using specific results that illustrate the

general trends.

1) Datasets with many Class Values: Figure 4 dis-

plays results for increasing values of k, obtained on the

20News[small] dataset using naive Bayes. The right-most set

of results corresponds to a full forward selection. “Training

accuracy” refers to accuracy on the training data, and “Ac-

curacy” is the accuracy obtained on the test sets of the outer

5-fold cross-validation.

The accuracy curve shown in this figure is typical for

datasets with many class values. 20News[small], as well as

Reuters[small], Coil-20[small], and Arrhythmia, differ from

the other 8 datasets because they have between 7 and 20

class values, and the behaviour is similar in these cases:

accuracy for small values of k is poor; it increases with k

until the graph flattens out. For this particular example, using

the fixed-width technique with k = 200 yields the highest

accuracy. From that point on accuracy tends to decrease

slightly, but it remains similar. Note that the number of

evaluations for k = 200 is about 7.5 times less compared

to a complete forward search.

On all datasets with many class values we considered,

accuracy plateaus when k is in the low hundreds. Proceeding

from there, it decreases a bit in the above example, but it may

 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96

T
ra

in
in

g
 A

c
c
u

ra
c
y
 

 0.52
 0.53
 0.54
 0.55
 0.56
 0.57
 0.58
 0.59

A
c
c
u

ra
c
y
 

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

E
v
a

lu
a

ti
o

n
s
 

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 1  10  100  1000  10000

S
e

t 
S

iz
e

 

k

SFS Fixed-Set SFS Fixed-Width

Fig. 5. SFS and SFS-BF results using naive Bayes for the CNS dataset.

slightly increase on other datasets: on Coil-20[small], using

naive-Bayes, maximum accuracy is obtained for the second-

to-last value of k.

The fixed-set and fixed-width techniques mainly differ for

small values of k (≤ 10). Fixed-width is superior in that

region, as it enables selection of more attributes; fixed-set is

too restrictive. This does not hold for high values of k: the

more attributes are available, the lower are the chances that

a few additional attribute make a difference. Note that the

difference in computational effort is negligible.

2) Datasets with few Class Values: The 6 microarray

datasets, as well as Internet[small] and Splice-Site, have very

few class values. Apart from the MLL data, which has 3

classes, they all have 2 classes. The main result for these

datasets is that the best accuracy can generally be achieved

for very small values of k. In 11 of 16 experiments (8 each

for naive Bayes and C4.5), the highest accuracy was achieved

for k ≤ 10. For larger values of k the accuracy stays almost

constant or decreases. We observed only two datasets where

the accuracy clearly increases up to slightly larger values

for k, namely k = 30 for Prostate-Cancer (using C4.5), and

k = 50 for Internet[small].

Figure 5 shows an example where the accuracy exhibits no

clear tendency, with peaks at k = 23 and k = 354. The curve
fluctuates significantly, although these results were averaged

from a 5-fold cross-validation repeated 5 times. Many of the

experiments on microarray data show similar behaviour. As

far as accuracy is concerned, it is difficult to decide on an

“optimal” value for k in these cases. However, it is clear that

Linear Forward Selection is preferable to a complete forward

search. Note that about half of the microarray datasets exhibit

a decrease in accuracy for large values of k.

B. Explicit Subset Size Determination in Forward Selection

We now investigate the technique introduced in Section IV,

which attempts to avoid overfitting by limiting the use of



Standard SFS vs SFS with Subset Size Detn.

few classes many classes

k t wins ∆acc ∆size wins ∆acc ∆size

10 s 11/0/5 0.003 -0.1 3/0/5 0.001 1.5
10 w 9/0/7 0.003 -0.4 4/0/4 0.006 4.1
50 s 9/1/6 0.002 -0.9 2/1/5 -0.002 0.3
50 w 9/0/7 0.003 -0.9 3/0/5 0.002 0.8
100 s 11/0/5 0.009 -1.3 2/0/6 -0.012 -1.1
100 w 11/0/5 0.008 -1.1 3/0/5 -0.007 -2.4
200 s 10/0/6 0.004 -1.5 5/0/3 -0.009 -4.2
200 w 10/0/6 0.004 -1.7 2/0/6 -0.019 -4.3
all 8/1/7 0.001 -2.3 2/0/6 -0.025 -5.8

TABLE II

COMPARISON OF ACCURACY FOR SFS (USING FIXED-SET AND

FIXED-WIDTH) AND EXPLICIT SIZE DETERMINATION, BOTH NAIVE

BAYES AND C4.5 WERE USED, GROUPED BY DATASET TYPES

cross-validation for evaluating individual subsets; rather, 5-

fold cross-validation is used to estimate the “optimal” subset

size, by performing 5 forward selection runs using the

simple wrapper evaluator, which uses the resubstitution error

for evaluation. The wrapper evaluator using (5-fold) cross-

validation is only used in the final run of forward selection,

once the “optimal” size has been determined.1

1) Explicit Subset Size Determination using all Attributes:

We first apply this method in standard forward selection,

before investigating the effect on Linear Forward Selection.

Measuring accuracy, this yields 10 wins and 13 losses, with

one draw, but no statistically significant differences. This

is shown in the last row of Table II, which distinguishes

between the two groups of datasets discussed above, and

also reports the average difference in accuracy and subset

size. As we perform 6 forward selections rather than one,

the number of evaluations is much higher than in a standard

forward selection, and thus not shown in the table. However,

because the simple wrapper is used for the first 5 forward

selections, the computational effort is only about 1.5 times

higher than in a normal forward selection. More importantly,

the modified method yields subsets that are about one third

smaller on average. This is the main advantage of forward

selection with explicit subset size determination.

2) Limiting the Number of Attributes: Table II also shows

the effect of explicit subset size determination on the two

types of Linear Forward Selection, for different values of

k: as k increases, the difference in subset size generally

increases; for larger values of k, explicit subset size deter-

mination leads to smaller subsets, without significant impact

on accuracy. The overall effect is thus positive.

Figures 6 and 7 show the behaviour in more detail, for

CNS (based on fixed-set) and 20News (based on fixed-

width). In CNS, using explicit size determination is clearly

beneficial across the board. In the case of 20News it actually

leads to larger—but also more accurate—subsets for small

k, but smaller subsets for large k. In the latter case, we

conjecture that the difference is primarily due to the fact that

1Using the simple wrapper produces comparable, but slightly worse
results [9].
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Fig. 6. Comparison of SFS (fixed-set) to explicit subset size determination
using the C4.5 classifier and the CNS dataset.
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Fig. 7. Comparison of SFS (fixed-width) to explicit subset size determi-
nation using the C4.5 classifier and the 20News[small] dataset.

the simple wrapper is used during the search for determining

the best subset size.

C. Comparison to related work

We now compare Linear Forward Selection, BIRS and

Rank-Search, discussed in Section II. Table III shows a

summary, comparing them to the fixed-set method—without

subset size determination.

We configured BIRS as recommended by [4]: ranking is

performed with a filter method (Symmetrical Uncertainty),

and the wrapper used during the search performs a 5-

fold cross-validation. Compared to BIRS, Linear Forward

Selection (with k = 100) yields competitive accuracy and

smaller subset sizes. The subsets chosen by BIRS are about

twice as large on average, and larger in 19 of 24 experiments.

The win/loss statistics are in favour of BIRS, but none of the

differences in accuracy are statistically significant. Moreover,

BIRS performs more subset evaluations (on the other hand,

the evaluator used for BIRS is faster).

We configured Rank-Search [11] to produce its initial

ranking by evaluating attributes individually using the wrap-

per. Nevertheless, only 10 of 24 experiments finished the

5 times 5-fold cross-validation. This is because very large

attribute subsets are evaluated during the search. However,

on some datasets this extra search effort pays off, especially

for Splice-Site using naive Bayes, where it yields an improve-

ment in accuracy of about 10% (93.68 percent). The main

drawbacks of Rank-Search are the large attribute subsets it

finds and the high computational effort required.



few classes many classes

Algorithms wins ∆acc ∆size wins ∆acc ∆size

BIRS - SFS 10 9/7 0.009 5.6 7/1 0.109 24.1
BIRS - SFS 50 11/5 0.009 4.3 7/1 0.055 18.8
BIRS - SFS 100 11/5 0.008 4.0 6/2 0.016 14.9
Rank - SFS 10 4/2 0.025 265.4 3/1 0.078 167.1
Rank - SFS 50 4/2 0.027 263.8 3/1 0.046 165.4
Rank - SFS 100 4/2 0.028 263.3 2/2 0.020 164.2
Rank - BIRS 3/3 0.016 260.7 3/1 0.001 153.6

TABLE III

COMPARISON OF SFS (FIXED-SET) TO BIRS AND RANK-SEARCH

(ONLY 10/24 EXPERIMENTS HAVE FINISHED IN TIME FOR

RANK-SEARCH: ARRHYTHMIA, COIL-20[SMALL], SPLICE-SITE FOR

BOTH ALGORITHMS; CNS, LUNG-CANCER, LEUKEMIA,

INTERNET[SMALL] FOR NAIVE BAYES ONLY)

VI. SUMMARY AND FUTURE WORK

We have presented two variants of Linear Forward Se-

lection, a simple technique for tackling high-dimensional

datasets with wrapper-based forward selection. Both variants,

fixed-width and fixed-set search, are preferable to standard

forward selection, primarily because of the dramatic reduc-

tion in runtime, but also because they can produce smaller

subsets without marked changes in accuracy. We have also

shown that Linear Forward Selection is competitive with

other approaches used for speeding up wrapper-based search.

However, the parameter k needs to be set to a sufficiently

large value; larger values are required for structurally more

complex learning problems.

We have also investigated explicit subset size determina-

tion in forward selection, inspired by ORDERED-FS [20].

Compared to the standard method, it generally produces

smaller subset without degrading accuracy. Moreover, it can

be successfully combined with Linear Forward Selection to

yield a fast method for obtaining small and accurate subsets

of attributes for high-dimensional data.
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[12] Edmundo Bonilla Huerta, Béatrice Duval, and Jin-Kao Hao. A hybrid

ga/svm approach for gene selection and classification of microarray
data. In EvoWorkshops, pages 34–44, 2006.

[13] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. Proceedings of the Fourteenth In-

ternational Joint Conference on Artificial Intelligence, 2:1137–1145,
1995.

[14] R. Kohavi and G.H. John. Wrappers for Feature Subset Selection.
Artificial Intelligence, 97(1-2):273–324, 1997.

[15] R. Kohavi and D. Sommerfield. Feature Subset Selection Using the
Wrapper Method: Overfitting and Dynamic Search Space Topology.
Proceedings of the First International Conference on Knowledge

Discovery and Data Mining, pages 192–197, 1995.
[16] N. Kushmerick. Learning to remove Internet advertisements. Pro-

ceedings of the third annual conference on Autonomous Agents, pages
175–181, 1999.

[17] David D. Lewis. Feature selection and feature extraction for text cate-
gorization. In Proceedings of Speech and Natural Language Workshop,
pages 212–217. Defense Advanced Research Projects Agency, Morgan
Kaufmann, February 1992.

[18] J. Loughrey and P. Cunningham. Using Early-Stopping to Avoid
Overfitting in Wrapper-Based Feature Selection Employing Stochastic
Search. Technical report, Technical Report TCD-CS-2005-37). Depart-
ment of Computer Science, Trinity College Dublin, Dublin, Ireland,
2005.

[19] S.A. Nene, S.K. Nayar, and H. Murase. Columbia Object Image
Library (COIL-20). Techn. Rep. No. CUCS-006-96, dept. Comp.

Science, Columbia University, 1996.
[20] Andrew Y. Ng. On feature selection: Learning with exponentially

many irrelevant features as training examples. In ICML, pages 404–
412, 1998.

[21] S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo,
M.E. McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau,
et al. Prediction of central nervous system embryonal tumour outcome
based on gene expression. Nature, 415(6870):436–442, 2002.
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